
Final Review 2

Problem 1: Consider the matrix:

A =

−2 3 3
2 −1 −1
−7 7 6


(a) Compute the characteristic polynomial of A.

(b) Compute eigenvalues and eigenvectors of A. What are the algebraic/geometric multiplicities?

(c) Diagonalize the matrix A.

(d) Describe the behavior of the solution to the system v̇(t) = Av(t) as t→∞, where v is a vector
consisting of three functions of t.

(e) Use Cramer’s rule to find a solution to the equation Aw =

1
0
0

.

Solution: (a) The characteristic polynomial is given by:

p(λ) = det

−2− λ 3 3
2 −1− λ −1
−7 7 6− λ


By cofactor expansion along the first column, this is given by:

p(λ) = (−2− λ) · det

[
−1− λ −1

7 6− λ

]
− 2 · det

[
3 3
7 6− λ

]
+ (−7) · det

[
3 3

−1− λ −1

]
=

= (−2− λ)(λ2 − 5λ+ 1)− 2(−3λ− 3) + (−7)(3λ) = −λ3 + 3λ2 − 6λ+ 4

(b) In general, there’s no formula for the solutions to a cubic polynomial. But in practical cases,
you can try and guess a solution (just plug in some easy numbers) which would allow you to chip
off a linear factor from the polynomial. In the case at hand, it’s easy to see that λ = 1 is a solution,
so the characteristic polynomial factors as:

p(λ) = (1− λ)(λ2 − 2λ+ 4)

Now the second polynomial is quadratic, and its solutions are:

λ =
2±
√

4− 16

2
= 1± i

√
3

So the roots of p, i.e. the eigenvalues, are:

λ1 = 1, λ2 = 1 + i
√

3, λ3 = 1− i
√

3 (1)

1



Remark. Let’s focus on the latter two eigenvalues, since they are conjugate complex numbers. You
may want to convert them from Cartesian to polar coordinates, and indeed, then way to do so is to
compute:

r = |1 + i
√

3| =
√

12 +
√

3
2

=
√

4 = 2

θ = arccos

(
1

2

)
=
π

3

Therefore, in polar coordinates, we have:

1 + i
√

3 = 2e
iπ
3 1− i

√
3 = 2e−

iπ
3

Since all the eigenvalues are distinct, they all have algebraic and geometric multiplicity 1. Let’s
now compute eigenvectors corresponding to the eigenvalues (1):

v1 ∈ NS(A− λ1 · I) = NS

−3 3 3
2 −2 −1
−7 7 5


To compute the nullspace to the right, let’s apply Gauss-Jordan decomposition:−3 3 3

2 −2 −1
−7 7 5

 
1 −1 0

0 0 1
0 0 0


and therefore:

v1 =

xy
z

 where

1 −1 0
0 0 1
0 0 0

xy
z

 = 0, i.e.

{
x− y = 0

z = 0

The pivot variables are x and z, and the free variables are y. So a choice of eigenvector is obtained
by setting the free variable equal to 1:

v1 =

1
1
0


As for the second eigenvalue, we have:

v2 ∈ NS(A− λ2 · I) = NS

−3− i
√

3 3 3

2 −2− i
√

3 −1

−7 7 56− i
√

3


Since it involves algebra with complex numbers, let’s do every step of Gauss-Jordan decomposition.
First, we must subtract:

−7

−3− i
√

3
=
−7(−3 + i

√
3)

32 +
√

3
2 =

21− i7
√

3

12

times the first row from the third row:−3− i
√

3 3 3

2 −2− i
√

3 −1

−7 7 5− i
√

3

 
−3− i

√
3 3 3

2 −2− i
√

3 −1

0 7− 21−i7
√
3

4 5− i
√

3− 21−i7
√
3

4

 =
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=

−3− i
√

3 3 3

2 −2− i
√

3 −1

0 7
4(1 + i

√
3) −1+i3

√
3

4


Then we must subtract:

2

−3− i
√

3
=

2(−3 + i
√

3)

32 +
√

3
2 =

−6 + i2
√

3

12

times the first row from the second row:−3− i
√

3 3 3

2 −2− i
√

3 −1

0 7
4(1 + i

√
3) −1+i3

√
3

4

 
−3− i

√
3 3 3

0 −2− i
√

3− −6+i2
√
3

4 −1− −6+i2
√
3

4

0 7
4(1 + i

√
3) −1+i3

√
3

4

 =

=

−3− i
√

3 3 3

0 −2−i6
√
3

4
2−i2

√
3

4

0 7
4(1 + i

√
3) −1+i3

√
3

4


Finally, we must subtract:

7(1 + i
√

3)

−2− i6
√

3
=

7(1 + i
√

3)(−2 + i6
√

3)

(−2)2 + 62
√

3
2 =

7(−2− i2
√

3 + i6
√

3− 6 · 3)

112
=
−5 + i

√
3

4

times the second row from the third row. Since 2−i2
√
3

4 · −5+i
√
3

4 = −1+i3
√
3

4 , we obtain:−3− i
√

3 3 3

0 −2−i6
√
3

4
2−i2

√
3

4

0 3+i7
√
3

4
3+i3

√
3

4

 
−3− i

√
3 3 3

0 −1−i3
√
3

2
1−i
√
3

2
0 0 0


To make all the pivots 1, we need to multiply the first and second row, respectively, by:

1

−3− i
√

3
=
−3 + i

√
3

12
and

2

−1− i3
√

3
=
−1 + i3

√
3

14

and we get:−3− i
√

3 3 3

0 −1−i3
√
3

2
1−i
√
3

2
0 0 0

 
1 −3+i

√
3

4
−3+i

√
3

4

0 1 1−i
√
3

2 · −1+i3
√
3

14
0 0 0

 =

1 −3+i
√
3

4
−3+i

√
3

4

0 1 2+i
√
3

7
0 0 0


Finally, we need to subtract −3+i

√
3

4 times the second row from the first row:1 −3+i
√
3

4
−3+i

√
3

4

0 1 2+i
√
3

7
0 0 0

 
1 0 −3+i

√
3

4 − 2+i
√
3

7
−3+i

√
3

4

0 1 2+i
√
3

7
0 0 0

 =

1 0 −3+i2
√
3

7

0 1 2+i
√
3

7
0 0 0


Therefore:

v2 =

1 0 −3+i2
√
3

7

0 1 2+i
√
3

7
0 0 0


xy
z

 = 0, i.e.

{
x+ z−3+i2

√
3

7 = 0

y + z 2+i
√
3

7 = 0
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The pivot variables are x and y, and the free variables are z. So a choice of eigenvector is obtained
by setting the free variable equal to 1:

v2 =

 3−i2
√
3

7
−2−i

√
3

7
1


Since the eigenvalue λ3 is the conjugate of the eigenvalue λ2, the corresponding eigenvector v3 is
the conjugate of the eigenvector v2 found above (this is a general feature which only requires A to
have real entries):

v3 =

 3+i2
√
3

7
−2+i

√
3

7
1


(c) The diagonalization of A is A = V DV −1, where:

V =
[
v1 v2 v3

]
=

1 3−i2
√
3

7
3+i2

√
3

7

1 −2−i
√
3

7
−2+i

√
3

7
0 1 1


and:

D =

λ1 0 0
0 λ2 0
0 0 λ3

 =

1 0 0

0 1 + i
√

3 0

0 0 1− i
√

3


(d) The solutions to the system in question are of the form:

v(t) = eAtc = V eDtV −1c = V

eλ1t 0 0
0 eλ2t 0
0 0 eλ3t

V −1c = V

et 0 0

0 et+it
√
3 0

0 0 et−it
√
3

V −1c
where c is an arbitrary vector with constant entries. Leaving aside the particular value of these
constants, the behavior of v(t) as t→∞ is determined by the rate of growth of the functions:

et, et+it
√
3, et−it

√
3

The former of these is well-known to you: it is an exponential. The second and third are equal to:

et · e±it
√
3 = et

(
cos(t

√
3)± i · sin(t

√
3)
)

As t → ∞, the function above tends to ∞ but oscillates between + and − infinity in accordance
with the way sine and cosine oscillate between positive and negative values.

(e) The determinant of A is 4, since it matches the value of the characteristic polynomial at λ = 0.
Cramer’s rule states that the solution is given by:

w =

w1

w2

w3


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where:

w1 =
1

4
det

1 3 3
0 −1 −1
0 7 6

 =
1

4
det

[
−1 −1
7 6

]
=

1

4

w2 =
1

4
det

−2 1 3
2 0 −1
−7 0 6

 = −1

4
det

[
2 −1
−7 6

]
= −5

4

w3 =
1

4
det

−2 3 1
2 −1 0
−7 7 0

 =
1

4
det

[
2 −1
−7 7

]
=

7

4

(the determinants above were computed by cofactor expansion along the column with many zeroes).

Problem 2: Consider the matrix:

A =

√2 0
1 1

0 −
√

2


(a) Compute the SVD of A.

(b) Consider the symmetric matrices ATA and AAT . Are they positive definite, positive semi-
definite, or neither? What are the corresponding energy functions of these symmetric matrices?

(c) Find numbers a and b for which the quantity:

(a
√

2− 1)2 + (a+ b− 1)2 + (−b
√

2− 1)2

is minimal.

Solution: (a) We need to compute the singular vectors v1, v2 (which form an orthonormal basis
of R2), the singular values σ1, σ2 and the singular vectors u1, u2, u3 (which form an orthonormal
basis of R3). To compute the v’s and the σ’s, we need to diagonalize the symmetric matrix:

ATA =

[
3 1
1 3

]
Its characteristic polynomial is:

p(λ) = (3− λ)2 − 1 = λ2 − 6λ− 8 = (λ− 4)(λ− 2)

hence its eigenvalues are λ1 = 2 and λ2 = 4. The singular values are the square roots of these,
so we have σ1 =

√
2 and σ2 = 2. The vectors v1 and v2 are eigenvectors of ATA, and the usual

procedure (see the previous problem for the calculation of eigenvectors) yields:

v1 =
1√
2

[
1
−1

]
and v2 =

1√
2

[
1
1

]
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(the reason for the scalar factor 1√
2

in front is that you want v1 and v2 to have length 1, in order

to give an orthonormal basis). With the v’s and the σ’s in hand, we can define u1 and u2 by the
equations:

Av1 = σ1u1 ⇒ u1 =
1√
2

√2 0
1 1

0 −
√

2

 1√
2

[
1
−1

]
=

1√
2

1
0
1


Av2 = σ2u2 ⇒ u2 =

1

2

√2 0
1 1

0 −
√

2

 1√
2

[
1
1

]
=

1

2

 1√
2
−1


Now we just need to compute u3, and it’s given by the property that it forms as orthonormal basis
together with u1, u2. The standard way to do this is Gram-Schmidt. Consider any basis:

u1,u2,a

where a is some arbitrary simple vector that is independent from u1 and u2, say:

a =

1
0
0


To modify the basis u1,u2,a in such a way as to make it orthonormal, we need to replace:

a b = a− proju1
a− proju2

a = a−u1(u
T
1 a)−u2(u

T
2 a) =

1
0
0

− 1

2

1
0
1

− 1

4

 1√
2
−1

 =
1

4

 1

−
√

2
−1


The vector b thus defined is orthogonal to u1, u2 by construction, and its length is 1

2 . Therefore,
we must renormalize it to have length 1, and the correct choice for u3 is:

u3 = 2b =
1

2

 1

−
√

2
−1


We conclude that the SVD of A is:

A = UΣV T

where:

U =
[
u1 u2 u3

]
, Σ =

√2 0
0 2
0 0

 , V =
[
v1 v2

]
with v1,v2, u1,u2,u3 computed as above.

As we have seen, ATA has eigenvalues 2 and 4. Since they are both positive, we conclude that
ATA is positive definite. Meanwhile, we have:

AAT =

 2
√

2 0√
2 2 −

√
2

0 −
√

2 2


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The positive eigenvalues of AAT are the same as those of ATA, namely 2 and 4. However, the
3× 3 matrix AAT has another eigenvalues, which must be a 0. Therefore, the matrix AAT is only
positive semidefinite, because its eigenvalues are non-negative (but it cannot be a positive definite
matrix because it has a 0 eigenvalue).

The energy functions are:

ATA  
[
x y

] [3 1
1 3

] [
x
y

]
= 3x2 + 2xy + 3y2

AAT  
[
x y z

]  2
√

2 0√
2 2 −

√
2

0 −
√

2 2

xy
z

 = 2x2 + 2y2 + 2z2 + 2
√

2xy − 2
√

2yz

Note that the quantity f(x, y) = 3x2 + 2xy+ 3y2 is always positive (unless x = y = 0) because the
matrix ATA is positive definite. However, the quantity g(x, y, z) = 2x2+2y2+2z2+2

√
2xy−2

√
2yz

is only non-negative, and indeed it does have zero values. One situation when this happens is when:xy
z

 = u3 =
1

2

 1

−
√

2
−1


For the values of x, y, z in the equation above, you can see that g(x, y, z) by direct calculation. But
probably a more conceptual way to see this is right from the SVD, which entails the fact that:

ATu3 = 0 ⇒ AATu3 = 0 ⇒ uT3 (AAT )u3 = 0

(c) The problem can be phrased as a least squares approximation problem. Specifically, the sum of
squares should always have you think about the length squared of a vector. A little thought shows
that the way to do this is:

(a
√

2− 1)2 + (a+ b− 1)2 + (−b
√

2− 1)2 =

∣∣∣∣∣∣
∣∣∣∣∣∣A
[
a
b

]
−

1
1
1

∣∣∣∣∣∣
∣∣∣∣∣∣
2

Therefore, we need to find that vector v =

[
a
b

]
such that Av is as close as possible to b =

1
1
1

.

The principle of least squares tells us we must have:

Av = projC(A)b = A(ATA)−1ATb

so we have to choose:

v = (ATA)−1ATb =

[
3 1
1 3

] [√
2 1 0

0 1 −
√

2

]1
1
1

 =
1

4

[
1 + 2

√
2

1− 2
√

2

]

Note that we could have also written v = A+b, where A+ is the pseudo-inverse of A. This is
because if we plug the formula for the SVD of A, we have:

(ATA)−1AT = (V ΣTΣV −1)−1V ΣTUT = V (ΣTΣ)−1ΣTUT = V Σ+UT = A+

7



The next-to-last identity is simply direct computation:

(ΣTΣ)−1ΣT =

[
σ21 0
0 σ22

]−1 [
σ1 0 0
0 σ2 0

]
=

[ 1
σ1

0 0

0 1
σ2

0

]

Problem 3: Consider two random variables X and Y , which take values:

{x = 1 and y = 1} with probability
2

3

{x = 0 and y = 3} with probability
1

3

(a) Find linear combinations of x and y which are uncorrelated (i.e. have covariance 0).

(b) Find a general formula, in terms of matrices and vectors, for the covariance of any two linear
combinations of these random variables: ax+ by and a′x+ b′y (where a, b, a′, b′ are numbers).

Solution: (a) We start by converting the problem into linear algebra. The first step is to put the
two random variables into a random vector:

X =

[
X
Y

]
Then the given input tells us that this random vector takes the value:[

1
1

]
with probability

2

3[
0
3

]
with probability

1

3

Therefore, the mean (or expected value) of the random vector is:

µ =
2

3

[
1
1

]
+

1

3

[
0
3

]
=

[
2
3
5
3

]
By definition, the covariance matrix is the following expectation value:

K = E[(X − µ)(X − µ)T ] =
2

3

([
1
1

]
−
[
2
3
5
3

])([
1
1

]
−
[
2
3
5
3

])T
+

1

3

([
0
3

]
−
[
2
3
5
3

])([
0
3

]
−
[
2
3
5
3

])T
=

=
2

3

[
1
3
−2

3

] [
1
3 −2

3

]
+

1

3

[
−2

3
4
3

] [
−2

3
4
3

]
=

2

9

[
1 −2
−2 4

]
+

1

9

[
4 −8
−8 16

]
=

2

3

[
1 −2
−2 4

]
(2)

The key step now is to diagonalize the covariance matrix. I won’t bore you with the details, because
it’s done just like in problem 1, but the answer is:

K = Q

[
0 0
0 10

3

]
QT where Q =

1√
5

[
2 −1
1 2

]
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So if we consider the random vector Y = QTX, then the covariance matrix of Y is:

E[(Y − E[Y ])(Y − E[Y ])T ] = QTKQ =

[
0 0
0 10

3

]
(3)

Therefore, the entries of Y are uncorrelated, and they are the linear combinations we are looking
for. Explicitly:

Y =
1√
5

[
2 1
−1 2

] [
x
y

]
=

[
2x+y√

5
−x+2y√

5

]
so our analysis shows that the linear combinations 2x+y√

5
and −x+2y√

5
are indeed uncorrelated. More-

over, the variances of these linear combinations can be read off from the diagonal entries of (3):

2x+ y√
5

has covariance 0

−x+ 2y√
5

has covariance
10

3

The first of these statements says that the random variable 2x+ y is a constant. And indeed, this
is the case because 2x + y is equal to 3 in either of the two cases prescribed by the probability
distribution in the problem.

(b) The covariance of any two random variables is linear, so:

Kax+by,a′x+b′y = aa′Kxx + ab′Kxy + ba′Kyx + bb′Kyy

If we recall that the covariance matrix is:

K =

[
Kxx Kxy

Kyx Kyy

]
then we conclude the formula:

Kax+by,a′x+b′y =
[
a b

]
K

[
a′

b′

]
You can get a number out of this by plugging any numbers you want for a, b, a′, b′, and the matrix
K from (2).
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